Exponents and Monomials – Quick Reference

42

This expression is read as "4 to

the second power" OR "4

squared".

 $4^2 = 4 \cdot 4$

It means that we multiply 4 by

itself 2 times.

 $4^2 = 16$

 $4 \cdot 4 = 16$

Tip

Whenever you have a **negative base** and the **exponent** is **even**, your answer will always be **positive!**

Whenever you have a **negative base** and the **exponent** is **odd**, your answer will always be **negative!**

 $(-3)^3$

This expression is read as -3 to the third power.

 $(-3)^3 = -3 \cdot -3 \cdot -3$

It means that we multiply -3 by

 $(-3)^3 = -27$

LAWS of EXPONENTS

Multiplying Powers with the Same Base

Property: When multiplying powers with the <u>same</u> base, add the exponents.

 $v^3 \cdot v^4 = v^7$

Since the bases are the same (y), you can add the exponents: 3+4 = 7.

Power of a Power Property

Property: To find the power of a power, multiply the exponents.

 $(a^3)^5 = a^{15}$

Multiply the exponents.

Power of a Product Property

Property: To find the power of a product, **find the power of each** factor and multiply.

Think of it as distributing the exponent to each factor!

$$(2xy)^3 = 2^3x^3y^3 = 8 x^3y^3$$

♦ ↓ ↓
 8 x³y³

 $2^3 = 8$. x^3y^3 cannot be combined because the bases are not the same.

Power of Quotient Property

Property: To find the power of a quotient, raise the numerator to the power, and the denominator to the power. Then divide.

$$\left(\frac{2}{3}\right)^2 = \frac{2^2}{3^2} = \frac{4}{9}$$

Zero Exponents

Any number (except 0) to the zero power is equal to 1.

 $4^0 = 1$

 $10^0 = 1$

 $22^0 = 1$

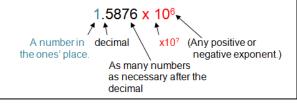
 $y^0 = 1$

The Rule for Negative Exponents:

The expression a⁻ⁿ is the reciprocal of aⁿ

$$3x^{-2} = \frac{3}{x^2}$$

**In this problem, only the x contains the negative exponent, so we only take the reciprocal of x^2 .


Multiplying Monomials Example

$(3x^2y^3z)^2 (-3xy^4z)$	Original Problem
(3x ² y ³ z) ² (-3xy ⁴ z) • (9x ⁴ y ⁶ z ²) (-3xy ⁴ z)	The first monomial is raised to the second power. Every constant and variable must be raised to the second power. **The second monomial is not raised to a power, so leave it as is!
$(9x^4y^6z^2)(-3xy^4z) = -27$	Multiply your coefficients.
$(9x^4y^6z^2)(-3xy^4z) = -27x^5y^{10}z^3$	Multiply the variables with like bases. (Add the exponents.)
$(3x^2y^3z)^2(-3xy^4z) = -27x^5y^{10}z^3$	Final Answer.

Simplifying Monomials Example

$\frac{2x^2y^3}{3x} \cdot \frac{9x^2y^2}{y^4} =$		Original Problem
$\frac{2x^2y^3}{3x} \cdot \frac{9x^2y^2}{y^4} =$	$\frac{18x^4y^5}{\cdots}$	Step 1: Multiply the numerators. Add the exponents of like bases.
$\frac{2x^2y^3}{3x} \cdot \frac{9x^2y^2}{y^4} =$	$\frac{18x^4y^5}{3xy^4}$	Step 2: Multiply the denominators. **There are no like bases, so we can't add the exponents.
$\frac{\frac{18}{3}x^{4}y^{5}}{3xy^{4}} =$	6 	Step 3: Divide the coefficients, if possible.
$\frac{18x^4y^5}{3xy^4} =$	$\frac{6x^3y}{ }$	Step 4: Subtract the exponents of like bases. $\frac{x^4}{x} = x^3 \text{ and } \frac{y^5}{y^4} = y$
$\frac{2x^2y^3}{3x} \cdot \frac{9x^2y^2}{y^4} =$	6x³y	Final Answer!

Scientific notation must always be written with the same components as the following model:

